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Abstract

Diterpenoids salvimulticanol (1) and salvimulticaoic acid (2) together with known
diterpenoid (3-6) were isolated from Salvia multicaulis. Structures were elucidated by
spectroscopic techniques including HRESIMS as well as 1D-, and 2D-NMR. In-vitro
cytotoxicity was assayed against human cancer cell lines. As several metabolites
exhibited activity against drug-resistance lines, compounds were screened against a panel
of human drug-sensitive and multidrug-resistant cancer lines. A proposed biosynthetic
pathway for these new diterpenoids (1-2) as well as the cytotoxic structure-activity
relationship of all identified compounds were discussed. Compound 1 and 6 showed the
most potent cytotoxicity with ICso 11.58 and 4.13 towards leukemia cell lines CCRF-
CEM and CEM-ADRS5000, respectively.
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1. Introduction

Salvia is one of the largest genera in the family Lamiaceae (Labiatae), consisting of
>900 species that are widely dispersed throughout the world, including the Mediterranean
region, South-East Asia and Central and South America [[1], [2], [3]]. Most of the Salvia
species are pharmacologically active and have been widely used in folk medicine for >60
different ailments ranging from aches to epilepsy. Target treatments include colds,
bronchitis, tuberculosis, obesity, diabetes, depression, dementia and menstrual disorders
[[4], [5], [6], [7]]. Salvia species are renowned for their abundance of flavonoids,
phenolics, terpenoids and steroids, most of which have a broad spectrum of biological
activity including antimicrobial, antioxidant, anti-inflammatory, anticancer and antiviral
activities [[7], [8], [9]]-

The diterpenoids from S. multicaulis roots showed significant activity against
Mycobacterium tuberculosis strain H37Rv [10]. Additionally, Essential oil of S§.
multicaulis showed antimicrobial activity against several strain [[11], [12], [13]].

Multidrug resistance (MDR) presents a major disruption effect for cancer



chemotherapy. Cancer cell MDR involves several members of the adenosine triphosphate
binding cassette (ABC) transporters such as ABCB1, ABCCl and ABCG2 that can
effectively efflux anti-cancer drugs [14, 15]. The acquisition of MDR is usually mediated
by overexpression of ABC transporters that precipitates in the failure of cancer
chemotherapy [[16], [17], [18], [19]]. Thus, identification of cytotoxic drugs unaffected
by ABC drug resistance is being sought. The structural diversity of natural compounds
from medicinal plants provides a rich source of potent metabolites to block the MDR
phenotype [[20], [21], [22], [23], [24]]. As part of our research to investigate and
biologically evaluate the wild Egyptian plants [[25], [26], [27], [28], [29], [30], [31], [32]],
herein, an organic extract of S. multicaulis was chemically analyzed for diterpenoid (1-6)
(Fig. 1) and purified compounds were assayed for cytotoxic activity against sensitive and
resistance multidrug-resistant cancer cells. Structure-activity relationships and a

biosynthetic pathway for diterpenoid assembly are proposed.

2. Experimental

2.1. General procedure

Specific rotation was measured with a JASCO P-2200 polarimeter (JASCO Corporation,
Tokyo, Japan) and IR spectra were collected on a JASCO FT/IR-6300 spectrometer
(JASCO Corporation, Tokyo, Japan). HRESIMS was obtained with a Q-ToF ULTIMA-
[T quadrupole TOF mass spectrometer (Waters, Eschborn, Germany). The 'H (600 MHz)
and *C NMR (150 MHz) spectra were recorded in CDCl3 on a JEOL ECA- 600
spectrometer (JEOL Ltd., Tokyo, Japan) with tetramethylsilane (TMS) as internal
standard. Purification was run on a Shimadzu HPLC system equipped with a RID-10A
refractive index detector and compound separation was performed on YMC-Pack ODS-
A (YMC CO. LTD., Tokyo, Japan, 250 X 4.7mmid.,5 gm)and250 X 10mmi.d.,
5 M m) columns for analytical and preparative separation, respectively. Chromatographic
separation included normal phase silica gel 60 (230-400 mesh, Merck, Darmstadt,
Germany) and Sephadex LH-20 (Pharmacia Co. Tokyo, Japan) were used for column
chromatography. TLC analysis was performed on pre-coated silica gel plates (Kieselgel
60 F254, 0.25 mm, Merck, Darmstadt, Germany) and spots were detected by spraying
with 10% H2SOs solution followed by heating.

2.2. Plant material
The air-dried aerial parts of S. multicaulis Vahl. were collected from South Sinai, Egypt



in May 2015. A voucher specimen was deposited in the Herbarium of Saint Katherine
protectorate, Egypt, as well as the herbarium of the National Research Centre (voucher
No. 310), Cairo, Egypt. The collection took place under the permission of Saint Katherine

Protectorate for scientific research.

2.3. Extraction and isolation

Aerial parts (1.0 kg) were powdered and extracted with CH>Cl.:MeOH (1:1) at room
temperature. The extract was concentrated in vacuo to obtain a gummy residue (110 g).
The concentrated crude extract was fractionated on silica gel flash CC (5 X 60 cm) and
eluted with gradient solvents of increasing polarity starting with (100%) n-hexane
followed by a gradient of n-hexane/ethyl acetate up to 100% ethyl acetate. Eighteen
fractions were collected and pooled together according to the TLC profile. Vanillin-
sulphuric acid spray reagent was used for compound spots detection. Similar fractions
were pooled according to their chromatographic properties to yield seven collected
fractions as the following: A (15 g), B(5.5g),C(10.5¢g),D (14 ¢g),E(12g),F(5.5g),G
(6.5 g). Fraction D (14 g) was subjected to further fractionation on ODS column (3 X
60 cm) using 80:20% (MeOH: H>0O) and finally wash with 100% MeOH. The obtained
sub-fraction was subjected to isolation and purification by a reversed phase HPLC (20
X 250 c¢cm) using MeOH:H»O (9:1, 2.5 L) with flowrate 3 mL/min to afford compound
(6, 20 mg). Fraction E (12 g) was also subjected to further fractionation on ODS column
(3 X 60 cm) using 75:25% (MeOH: H;0O) and finally washed with 100% MeOH. The
obtained fraction was further purified by a reversed phase HPLC using MeOH: H>O (8:2,
2.5 L) with flowrate 6 mL/min to afford compounds (1, 10.5 mg) and (3, 14.0 mg).
Fraction F (5.5 g) was purified by a reversed phase HPLC using MeOH: H,O (7:3,2.5L)
with flowrate 6 mL/min to afford compounds (2, 8 mg) and (4, 12 mg). Fraction G (6.5
mg) was purified by a reversed phase HPLC using MeOH:H20 (50:50%, 2.5 L) with
flowrate 6 mL/min to afford compound (5, 8.5 mg).

2.3.1. Compound 1

11,12,14-trihydroxy-19(4 - 3)-abeo-3,5,8,11,13-abietapentaen-2,7-dione
(salvimulticanol). Colorless oil; [ @ ]*°p + 318.0 (¢ 0.01, MeOH); 'H and '*C NMR data,
see Table 1; HRESIMS m/z 341.1383 [M-H]; (caled. for C20H220s5, 341.1394).

2.3.2. Compound 2
11,12,14-trihydroxy-3,7-dione-2,3-seco-4(18),8,11,13-abietatetraen-2-oic acid
(salvimulticaoic acid). Colorless oil; [ & ]*p 38.8 (¢ 0.01, MeOH); 'H and '3C NMR data,



see Table 1; HRESIMS m/z 359.1493 [M-OH]; (caled. for C20H2407, 359.1489).

2.3.3. Cell culture and treatment conditions

The drug-sensitive leukemia cell line CCRF-CEM and its multidrug-resistant P-
glycoprotein-overexpressing subline CEM/ADRS5000 (treated once per week with 5000
ng/mL doxorubicin) were cultured in RPMI 1640 medium (Invitrogen) supplemented
with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (v/v).

Breast cancer cells MDA-MB-231-pcDNA3 and their multidrug-resistant subline MDA -
MB-231-BCRP clone 23 (treated once per week with 300 ng/mL geneticin), colon cancer
cells HCT116 (p53**) and their knockout clone HCT116 (p53™") (treated once per week
with 800 ng/mL geneticin), glioblastoma cells U87MG and their resistant subline US7MG.
AEGFR (treated once per week with 800 ng/mL geneticin) and HEK-293and HEK-293-
ABCBS were cultured in DMEM medium supplemented with 10% FBS, 1% penicillin-
streptomycin (v/v). The cells were kept in a humidified atmosphere with 5% COz at 37 °
C.

2.3.4. Resazurin cytotoxicity assay

The cytotoxicity of isolated compounds was determined by resazurin reduction assay
(O'Brien et al., 2000). The principle of the assay is based on the reduction of resazurin by
actively metabolic living cells to highly fluorescent dye resorufin. Suspension cells (1 X

10* cells/well) were seeded onto 96-wells plate in a volume of 100 ¢ L and varying
concentrations for the generation of concentration-response curves of isolated metabolites,
were added immediately to reach total volume of 200 u L. Adherent cells were incubated
5 x 10° cells/well in 96-wells plate in a volume of 100 4 L for overnight to let them
attach. Afterwards varying concentrations of crude extract were added in the same manner
as mentioned above. After 72 h, 20 u L of 0.01% w/v resazurin (Sigma-Aldrich,
Taufkirchen, Germany) was added to each well, cells were incubated for 4 h at 37 ° C.
Fluorescence at excitation wave length 544 nm and emission at 590 nm was measured
using Infinite M2000 Pro™ plate reader (Tecan, Crailsheim, Germany). Each assay was
repeated three independently with six replicate each. Fifty percent inhibitory
concentration (ICso) values were calculated using the concentration-response curve fit to
the nonlinear regression model using GraphPad Prism v6.0 software (GraphPad Software

Inc., San Diego, CA, USA). All ICso values are expressed as mean = standard deviation
(SD).

3. Results and discussion



Chromatographic fractionation and purification of a dichloromethane/methanol (1:1)
extract of the aerial parts of S. multicaulis using normal and reversed phase
chromatography afforded new diterpenoid compounds (1-2), in addition to known
compounds (3-6) (Fig. 1).

Compound 1 was obtained as a colorless oil with an optical rotation of [ @ ]*p +
318.0 (¢ 0.01, MeOH). The molecular formula, C20H2,05 was determined on the basis of
HR-ESI-MS analysis (m/z 341.1383 [M-H] (calcd. for C20H220s5, 341.1394), indicating
10 degrees of unsaturation as a double bond equivalent of which three were accounted
for by the presence of a tricyclic skeleton while the remaining seven degrees of
unsaturation suggested the presence of seven double bonds. '3C NMR and DEPT spectral
analyses revealed the presence of five methyls, one methylene, two methines (one
olefinic) and 12 quaternary carbons (two keto and 10 olefinic), indicating 20 carbon
molecules with the presence of a six-membered aromatic system (see Table 1). This
proposed skeleton combined with two olefinic methyl singlet signals at & 2.21 (3H, s,
Me-18) and 2.00 (3H, s, Me-19) as well as a methyl signal at & u 1.62 (3H, brs, Me-20)
suggested an abietane-type diterpenoid [29, 30]. Characteristic proton NMR signals for
an isopropyl group were observed at 0 u 1.38 (3H, d, J = 7.0 Hz, H-16), 0 u 1.39 (3H,
d,J=7.0Hz,H-17),and & u 3.44 (1H, m, H-15). HMBC correlations observed between
H-16/C-15, H-17/C-15, H-16/C-13 and H-17/C-13 were consistent with the propyl
attachment at C-13 (Fig. 2); a downfield singlet signal at & i 6.53 (1H, s) was assigned
to H-6 and two doublets at & 5 2.40 (1H, d, J=17.0 Hz, H-1a) and 4.18 (1H, d, J=17.0
Hz, H-1b) to H»>-1. The locations of the carbonyl groups at C-2 and C-7 were supported
by observed correlation between H-1/C-2, H-19/C-2 and between H-6/C-7 in HMBC
analysis (Fig. 2). The B configuration of methyl group at C-10 (H3-20, 0 1 1.62, brs)
was assigned based on biogenetic precedent and was consistent with previously reported
NMR chemical shift data for similar abietane type diterpenoids [[33], [34], [35], [36],
[37], [38]]. From the above data, 1 was identified as 11,12,14-trihydroxy-19(4 — 3)-
abeo-3,5,8,11,13-abietapentaen-2,7-dione (salvimulticanol, 1), a new natural compound.

Compound 2 was isolated as a yellowish oil with an optical rotation of [ & Jp?* + 38.8
(c 0.01, MeOH) The HRESIMS spectrum (m/z 359.1493 [M-OH]" (calcd. For C20H2407,
359.1489) corresponded to a molecular formula of Cy0H2407 with 9 degrees of
unsaturation as double bonds equivalents of which, five were accounted for the presence
of a bicyclic skeleton containing a six-carbon aromatic system. The '*C NMR and DEPT
spectra showed 20 carbon atoms and classified as, four methyls, three methylenes (one

olifenic), two methines and eleven quaternary carbons. Both 'H and '3C NMR spectra of



1 and 2 were similar (Table 1), with three diagnostic modifications. [i] Two protons
shifted downfield to broad singlets at & n5.96 (1H, brs, H-18a) and 6.52 (1H, brs, H-
18b) being attached to C-18 at & ¢ 129.7 in 2 instead of H-18 at § 1 2.21 (1H, s) and C-
18 at & ¢ 17.61in 1. This suggested a replacement of Me-18 in 1 by exomethylene group
in 2. [ii] An absence of a C-5/C-6 double bond in 2, which was confirmed by the
appearance of H-5 at &y 2.43 (1H, m) and C-5 at & ¢ 39.2 in addition to the presence
of two new signals setat & n2.91 (IH, dd, J = 14.7, 18.0 Hz, H-6a), 3.82 (IH, dd, J = 3.6,
14.7 Hz, H-6b) and C-6 at 39.3 & ¢ with respect to those of 1 at & ¢ 160.2 (C-5), O u
6.53 (1H,s, H-6) and & ¢ 124.4 (C-6). And [iii] a down-field shift of the C-3 resonance
from 8¢ 136.2in1to &c 198.7 in 2 accompanied by a C-2 shift from ¢ 198.6 in 1
to upfield position at & C166.1 in 2, and the appearance of Me-19 at & i 2.42 (3H, s) in
2 instead of & n 2.00 in 1, indicating the presence of acetyl group at C-4 together with
carboxyl group at C-1. From these observations, the structure of 2 has 2,3-seco-abietane
rearranged diterpenoid skeleton. The location of the carboxyl group at C-1 and acetyl
group at C-4 was confirmed from HMBC correlations observed between H-1/C-2 and H-
19/C-3, respectively (Fig. 2). Two and three bond correlations between H-5/C-3, H-5/C-
4, H-5/C-6, H-6/C-4, H-6/C-5, H-6/C-7, H2-18/C-3, H2-18/C-4 and H»>-18/C-5 were
further supported the assignment of H-5, H-6 and H-18 (Fig. 2).

All of the abietane derivatives isolated from the same genus related to compound 2
indicated that the relative configuration of H3-20 and H-5tobein 3 and « orientating,
respectively [35, 36, 39]. All of the above data were compatible with 2,3-seco-abietane
skeleton of 2 and was elucidated as, 11,12,14-trihydroxy-3,7-dione-2,3-seco-
4(18),8,11,13-abietatetraen-2-oic acid (salvimulticaoic acid, 2).

Four previously isolated compounds were identified by comparison of published
spectral data including: 2-oxocandesalvone, 3 [35], candesalvone B, 4 [36], 6- 83 -
hydroxycandesalvone B, 5 [36] and candesalvone B methyl ester, 6 [39].

Geranylgeranyl diphosphate (GGPP) is considered the main precursor for
biosynthesis of diterpenoid compounds, and recently miltradiene was shown to be the
precursor of a vast array of phenolic abietane diterpenoids through the incorporation of
oxygen catalyzed by cytochromes Psso enzyme (PYP), (Fig. 3) [40]. Recent studies
suggested that many complex reactions in the plant, including aromatization are
enzymatically catalyzed and the aromatic intermediate abietatriene simply hydroxylated
by a specific cytochrome Psso enzyme, (Fig. 3) [41, 42]. Thus, the biosynthesis of 1 is
proposed to go through an aromatization of the C ring, hydroxylation and oxidation
reactions, as well as rearrangement reactions in the A and B rings (Fig. 3). Compound 2

is proposed to be generated biosynthetically from 1 via a condensation of the carbonyl



group at C-1 with acetyl-CoA, followed by a rearrangement reaction in ring A, oxidation
of acetyl group and reduction of A>® bond (Fig. 3).

Cancer is one of the most prevalent causes of deaths globally [43]. Numerous plant
extracts have been shown to possess potential anticancer activity. In the present study, the
isolated compounds (1-6) were initially screened in vitro against two cancer cell lines:
human acute lymphocytic leukemia (CCRF-CEM) and childhood T acute lymphoblastic
leukemia (CEM-ADRS5000) at five concentrations (0.01-100 ¢ M) using the Resazurin
reduction assay [44]. Cytotoxic activity was observed for the doxorubicin-resistant CEM-
ADRS5000 cells with an ICso values ranging from 4.1-21.60 g M. This compound
appears to be more potent than for CCRF-CEM cells which exhibited an ICso ranging
from 11.6-31.5 1 M, (see Table 2). The highest cytotoxicity was observed with 6 against
CEM-ADRS5000 cells showing an ICso 4.1 ¢ M, followed by 1, 5, 3, 4 and 2 with
respective ICso values of 8.36, 10.77, 11.37, 19.61 and 21.60 u M. In contrast, 3 was the
most active against CCRF-CEM cells with an ICso of 11.58 ¢ M, followed by 1, 6, 5, 2,
and 4 with ICso values; 15.32, 20.95, 21.54, 28.28 and 31.52 u M, respectively.
Compounds 1, 3, 5, and 6 were efficacious against both CEM-ADRS5000 and CCRF-CEM
cells. Compound 3 showed ICso values ranging from 1.30-23.84 ¢ M for cell lines
MDA-MB-231-pcDNA, MDA-MB-231-BCRP clone 23, US7MG, U87MG. A EGFR,
HCT116 (p53**), HCT116 (p53™"), HEK-293, and HEK-293-ABCBS cells (see Table 2).
Other biologically active metabolites included 1 with and an ICso range of 1.62-38.95
M, 6with an ICso range of 1.72-> 100 ¢ M and 5 with an ICso range of 1.84 - >100 u
M. Both U87MG and U87MG. AEGFR cells were resistant to 5 and 6with IC50 (>100
u M), (Fig. 4, Fig. 5, Table 2, Table 3).

All isolated compounds (1-6) belongs to the aromatic abietane diterpenoids
possessing an aromatic C-ring with p- and o-phenolic hydroxyl groups (catechol) together
with the characteristic isopropyl moiety that are the essential structural requirements or
pharmacophore required for these compounds to show cytotoxic activity against human
cancer cell lines [45]. Also, all compounds in our current study contained an endocyclic
«, 3 -unsaturated carbonyl functional group at C-7 on B-ring, which plays an important
role as a key pharmacophore for exhibiting cytotoxic activity [8, 46, 47]. Previous studies
also demonstrated that the o,/ -unsaturated carbonyl functional group facilitates the
alkylation of cellular thiol groups in a Micheal type addition reaction causing cell damage
and enhancing the cytotoxic activity [[48], [49], [50]]. In the current study, 3 has the same
chemical structure as 1, except for a saturated A >° double bond in 3 (Fig. 1). Cells of
CCRF-CEM, MDA-MB-231-pcDNA, MDA-MB-231-BCRP clone 23, U87MG,
U87MG. AEGFR, HCT116 (p53**), HCT116 (p53™"), HEK-293, and HEK-293-ABCB5



were all more sensitive to 3 comparing with 1, demonstrating that the absence of A 3¢
double bond in 3 is favorable although not a prerequisite for cell cytotoxic activity (Table
2, Table 3). Interestingly, 1 was only more cytotoxic than 3 against the CEM-ADRS5000
cells (Table 2), that can be attributed to the conjugation of two endocyclic carbonyl groups
at C-2 and C-6 with A3*and A>® double bonds. The minor difference in structures of
4, 5 and 6, can be attributed the variations in their cytotoxic activity (Fig. 1), (Table 2,
Table 3). As regards the effect of C-6 substitution on the cytotoxic activity, a hydroxyl
group at C-6 seems to enhance the activity against both CCRF-CEM and CEM-ADRS5000
cells more than those analogs without substitution (5 vs 4). Additionally, 5 is slightly more
active than 6 against both the MDA-MB-231-pcDNA and HEK-293 cells, suggesting that
the analogs having carboxylic group is more cytotoxic than the corresponding methyl
ester containing analogs (5 vs 6), (Table 3). In contrast, 6, more cytotoxic than 5 against
the CCRF-CEM, CEM-ADR5000, MDA-MB-231-BCRP clone 23, HCT116 (p53*™"),
HCT116 (p53™") and HEK-293-ABCBS5 cells (see Table 2), indicating that these cells are
more sensitive to the methyl ester containing analogue than the carboxylic one, while as
the U87MG and US7MG. A EGFR cells are not sensitive to both analogs (6 vs 5).

While 1-6 easily oxidize to the corresponding quinone on the C-ring, the quinone-
bearing C-ring is an essential pharmacophore requirement for a series of phenolic

abietane diterpenoids to exhibit cytotoxic activity [45].
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Table 1.

No.

la

10
11
12
13
14
15
16
17

18

19

20

'H (600 MHz) and '*C (150 MHz) NMR spectral data for 1 and 2.

1 2
Ju (Jin Hz) dc Ju (Jin Hz) dc

2.40d(17.0) 45.5 2.22.d(17.0) 41.9
4.18d (17.0) 2.71d(0.7)

- 198.6 - 166.1
- 136.2 - 198.7
- 147.5 - 146.2
- 160.2 243 m 39.2
6.53s 124.4 2.91dd (14.7,18) 39.3

3.82brd (3.6, 14.7)

— 189.1 - 200.9
— 108.0 - 106.4
— 131.5 - 128.9
_ 42.1 — 36.2
— 134.7 - 130.2
_ 149.3 - 150.0
— 119.8 - 121.5
— 157.7 - 160.6
3.44m 24.9 3.54m 24.2
1.38d (7.0) 20.5 1.31d(7.0) 19.9
1.39d (7.0) 20.5 1.32d(7.0) 20.0
2.21s 17.6 5.96 brs 129.7
6.52brs
2.00s 12.0 242s 25.8
1.62 brs 25.1 1.17s 18.1



Table 2. Cytotoxicity of isolated compounds (1-6) towards CCRF-CEM and CEM-
ADRS5000 Human Leukemia cancer cell lines determined by the resazurin assay after
72 h incubation.

Cell lines Compounds Doxorubicin
1 2 3 4 5 6
(ICso, pM)
CCRF-
15.32+£0.29 28.28+0.15 11.58+0.12 31.524+0.14 21.54+0.16 20.95+0.15 0.01+0.06
CEM
CEM- 8.36*+0.16 21.6+0.14 11.37+ 19.61°+ 10.77°« 4.13*+£0.10  66.83%+ 0.05

ADRS5000 (0.54) (0.76) 0.11(0.001) 0.11(0.62)  0.12(0.5) (0.19) (3341)



Table 3. Cytotoxicity of compounds (1, 3, 5 and 6) showed potent collateral activities

against drug-resistance CEM-ADRS5000 cells towards a panel of human drug-sensitive

and multidrug-resistant cancer cell lines determined by the resazurin assay after 72 h
incubation. Resistance of MDA-MB-231-BCRP cells, HCT116 (p537") cells,
U87MG.AEGFR cells, and HEK-293-ABCBS cells towards doxorubicin as control drug
has been published by us [40, 46].

Cell lines

MDA-MB-231-pcDNA
MDA-MB-231-BCRP
HCT116 (p53*)
HCT116 (p537")
USTMG
USTMG.AEGFR
HEK-293

HEK-293-ABCBS

32.01+0.05

26.40 +0.09 (0.82)

30.91+0.11

38.95%+0.13 (1.26)

30.33+0.09

35.317+0.10 (1.16)

45.61+0.09

42.02* +0.09 (0.92)

Compounds
3 5
(ICso, pM)
20.55+0.08 83.69+0.07

14.53*+0.13(0.70)

19.82+0.08

19.94*+0.13 (1.00)

19.95+0.12

23.84*+0.11 (1.19)

23.08£0.09

19.97*+0.10 (0.86)

74.66° +0.16 (0.89)

46.46+0.10

77.15%£0.17 (1.66)

>100

>100

66.88 +0.08

70.19% +0.07 (1.04)

89.15+0.08

60.44% +0.12 (0.67)

41.02+0.12

70.43*+0.10 (1.71)

>100

>100

74.80+0.08

52.51*+0.1 (0.70)



4R1=CH3R2=H,R3=H
5R;=CH;R,=0OH, R3=H
6R1=CH3R2=H,R3=CH3

Fig. 1. Structures of the isolated compounds (1-6) from S. multicaulis.



Fig. 2. Select HMBC (—) and '"H-"H COSY (-) correlation for 1 and 2.
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Fig. 3. Proposed scheme of biosynthesis pathway for 1-2.
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Fig. 4. Dose response curves of 1 (A), 3 (B), 5 (C) and 6 (D) towards drug-sensitive
parental CCRF-CEM and their multidrug-resistant subline, CEM/ADRS5000, Breast
cancer cells MDA-MB-231-pcDNA3 and their multidrug-resistant subline MDA-MB-
231-BCRP clone 23, colon cancer cells HCT116 (p53*") and their knockout clone

HCT116 (p537"), glioblastoma cells US7MG and their resistant subline

U87MG.AEGFR and HEK-293 and HEK-293-ABCBS. as determined by

the resazurin assay. Mean values and standard deviations of each three independent

experiments with each six parallel measurements are shown.
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Fig. 5. Dose response curves of 2 (A) and 4 (B) towards drug-sensitive parental CCRF-CEM tumor
cells and their P-glycoprotein-expressing, multidrug-resistant subline, CEM/ADRS5000 as
determined by the resazurin assay. Mean values and standard deviations of each three independent

experiments with each six parallel measurements are shown.



